PostgreSQL vs MySQL vs SQLite: Complete Database Comparison Guide
Compare PostgreSQL, MySQL, and SQLite to choose the right database for your project. Performance, features, use cases, and migration strategies included.
Table of Contents
- Introduction
- Understanding SQL Databases
- PostgreSQL: The Advanced Open-Source Database
- MySQL: The Popular Workhorse
- SQLite: The Embedded Database
- Feature Comparison
- Performance Comparison
- Use Case Scenarios
- Migration Strategies
- Best Practices
- Conclusion
Introduction
Choosing the right database is one of the most critical decisions in application development. PostgreSQL, MySQL, and SQLite are three of the most popular SQL databases, each with distinct strengths, use cases, and trade-offs. Understanding their differences will help you make an informed decision that aligns with your project’s requirements, scale, and constraints.
PostgreSQL has gained a reputation as the most advanced open-source relational database, offering extensive features and strict SQL compliance. MySQL remains the most widely used database globally, powering countless web applications with its simplicity and reliability. SQLite, while less visible, is the most deployed database engine in the world, embedded in billions of devices and applications.
This comprehensive guide compares PostgreSQL vs MySQL vs SQLite across performance, features, scalability, and real-world use cases. Whether you’re building a small web application, a large-scale enterprise system, or a mobile app, you’ll learn which database best fits your needs and how to leverage their unique capabilities.
Understanding SQL Databases
Before diving into specific databases, it’s essential to understand what makes SQL databases valuable and how they differ from NoSQL alternatives. SQL (Structured Query Language) databases store data in tables with predefined schemas, enforce relationships through foreign keys, and provide ACID (Atomicity, Consistency, Isolation, Durability) guarantees.
Relational Database Fundamentals
All three databases—PostgreSQL, MySQL, and SQLite—are relational database management systems (RDBMS) that:
- Store data in tables with rows and columns
- Enforce data integrity through constraints
- Support SQL for querying and manipulation
- Maintain relationships between tables
- Provide transaction support
However, they differ significantly in their architecture, feature sets, and deployment models.
Database Architecture Types
Server-Based Databases (PostgreSQL, MySQL):
- Run as separate server processes
- Handle multiple concurrent connections
- Require network access (even locally)
- Support client-server architecture
- Ideal for multi-user applications
Embedded Databases (SQLite):
- Run as part of the application process
- No separate server process needed
- File-based storage
- Zero configuration
- Perfect for single-user or embedded systems
PostgreSQL: The Advanced Open-Source Database
PostgreSQL, often called “Postgres,” is an object-relational database system known for its advanced features, standards compliance, and extensibility. It’s developed by a global community and has been actively maintained for over 30 years.
Key Features
Advanced Data Types: PostgreSQL supports an extensive range of data types beyond standard SQL:
-- JSON and JSONB for document storageCREATE TABLE products ( id SERIAL PRIMARY KEY, name VARCHAR(100), metadata JSONB, -- Binary JSON for better performance tags TEXT[]);
-- Array typesINSERT INTO products (name, metadata, tags)VALUES ( 'Laptop', '{"brand": "Dell", "specs": {"ram": "16GB"}}'::jsonb, ARRAY['electronics', 'computers']);
-- Full-text searchSELECT * FROM productsWHERE to_tsvector('english', name || ' ' || metadata::text)@@ to_tsquery('english', 'laptop');Advanced Indexing: PostgreSQL offers multiple indexing strategies:
-- B-tree index (default)CREATE INDEX idx_name ON products(name);
-- GIN index for JSONB and arraysCREATE INDEX idx_metadata ON products USING GIN(metadata);
-- GiST index for full-text searchCREATE INDEX idx_search ON products USING GIST(to_tsvector('english', name));
-- Partial index for conditional indexingCREATE INDEX idx_active_products ON products(name) WHERE active = true;Extensibility: PostgreSQL’s extension system allows adding functionality:
-- Enable PostGIS for geographic dataCREATE EXTENSION postgis;
-- Enable UUID generationCREATE EXTENSION "uuid-ossp";
-- Use UUID as primary keyCREATE TABLE users ( id UUID PRIMARY KEY DEFAULT uuid_generate_v4(), email VARCHAR(255) UNIQUE NOT NULL);Strengths
✅ Standards Compliance: PostgreSQL closely follows SQL standards, making it easier to port applications
✅ Advanced Features: Supports complex queries, window functions, common table expressions (CTEs), and recursive queries
✅ Data Integrity: Strong type system and comprehensive constraint support
✅ Extensibility: Rich ecosystem of extensions (PostGIS, pg_trgm, hstore, etc.)
✅ Concurrent Access: Excellent handling of multiple concurrent connections
✅ JSON Support: Native JSON and JSONB types with indexing and querying capabilities
Limitations
❌ Memory Usage: Can be more memory-intensive than MySQL for simple workloads
❌ Learning Curve: Advanced features require deeper understanding
❌ Configuration Complexity: More configuration options can be overwhelming for beginners
Ideal Use Cases
- Complex applications requiring advanced SQL features
- Applications needing JSON/document storage alongside relational data
- Geographic information systems (GIS) with PostGIS extension
- Data warehousing and analytics
- Applications requiring strict ACID compliance
- Multi-tenant SaaS applications
MySQL: The Popular Workhorse
MySQL is the world’s most popular open-source database, powering millions of web applications from small blogs to large-scale platforms like Facebook, Twitter, and YouTube. Acquired by Oracle in 2010, MySQL continues to evolve with both open-source and commercial editions.
Key Features
Storage Engines: MySQL’s pluggable storage engine architecture allows choosing the right engine for your workload:
-- InnoDB (default, ACID-compliant)CREATE TABLE orders ( id INT AUTO_INCREMENT PRIMARY KEY, user_id INT, total DECIMAL(10, 2), created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP, FOREIGN KEY (user_id) REFERENCES users(id)) ENGINE=InnoDB;
-- MyISAM (faster reads, no transactions)CREATE TABLE logs ( id INT AUTO_INCREMENT PRIMARY KEY, message TEXT, created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP) ENGINE=MyISAM;
-- Memory (in-memory storage)CREATE TABLE sessions ( session_id VARCHAR(255) PRIMARY KEY, data TEXT, expires_at TIMESTAMP) ENGINE=MEMORY;Replication: MySQL offers robust replication capabilities:
-- Master server configuration (my.cnf)[mysqld]server-id = 1log-bin = mysql-binbinlog-format = ROW
-- Replica server configuration[mysqld]server-id = 2relay-log = mysql-relay-binread-only = 1Partitioning: MySQL supports table partitioning for large datasets:
-- Range partitioning by dateCREATE TABLE sales ( id INT AUTO_INCREMENT, sale_date DATE, amount DECIMAL(10, 2), PRIMARY KEY (id, sale_date)) PARTITION BY RANGE (YEAR(sale_date)) ( PARTITION p2022 VALUES LESS THAN (2023), PARTITION p2023 VALUES LESS THAN (2024), PARTITION p2024 VALUES LESS THAN (2025), PARTITION p_future VALUES LESS THAN MAXVALUE);Strengths
✅ Performance: Excellent read performance, especially with MyISAM for read-heavy workloads
✅ Simplicity: Easy to set up and configure, great for beginners
✅ Ecosystem: Massive community, extensive documentation, and tooling support
✅ Replication: Mature replication features for high availability
✅ Compatibility: Works well with popular web frameworks (LAMP, LEMP stacks)
✅ Commercial Support: Available from Oracle and third-party vendors
Limitations
❌ Advanced Features: Fewer advanced SQL features compared to PostgreSQL
❌ JSON Support: JSON support is less mature than PostgreSQL’s JSONB
❌ Strict Mode: Default behavior can be less strict, leading to data integrity issues if not configured properly
❌ Storage Engine Choice: Need to understand different storage engines and their trade-offs
Ideal Use Cases
- Web applications (especially PHP-based)
- Content management systems (WordPress, Drupal, Joomla)
- E-commerce platforms
- Read-heavy applications
- Applications requiring simple, straightforward database operations
- Projects needing extensive community support and resources
SQLite: The Embedded Database
SQLite is a C-language library that provides a lightweight, disk-based database that doesn’t require a separate server process. It’s the most widely deployed database engine globally, embedded in everything from web browsers to mobile apps to operating systems.
Key Features
Zero Configuration: SQLite requires no setup—just include the library and start using it:
// Node.js exampleconst sqlite3 = require("sqlite3").verbose();const db = new sqlite3.Database("./app.db");
db.serialize(() => { // Create table db.run(`CREATE TABLE IF NOT EXISTS users ( id INTEGER PRIMARY KEY AUTOINCREMENT, email TEXT UNIQUE NOT NULL, name TEXT )`);
// Insert data db.run(`INSERT INTO users (email, name) VALUES (?, ?)`, [ "user@example.com", "John Doe", ]);
// Query data db.each(`SELECT * FROM users`, (err, row) => { console.log(row); });});
db.close();File-Based Storage: All data is stored in a single file:
// JavaScript/Node.js exampleconst sqlite3 = require("sqlite3").verbose();const db = new sqlite3.Database("./app.db");
// Create tabledb.serialize(() => { db.run(` CREATE TABLE IF NOT EXISTS products ( id INTEGER PRIMARY KEY AUTOINCREMENT, name TEXT NOT NULL, price REAL, stock INTEGER DEFAULT 0 ) `);
// Insert with transaction db.run("BEGIN TRANSACTION");
const stmt = db.prepare( "INSERT INTO products (name, price, stock) VALUES (?, ?, ?)", );
stmt.run("Laptop", 999.99, 10, (err) => { if (err) { db.run("ROLLBACK"); throw err; } });
stmt.run("Mouse", 29.99, 50, (err) => { if (err) { db.run("ROLLBACK"); throw err; } });
stmt.finalize((err) => { if (err) { db.run("ROLLBACK"); } else { db.run("COMMIT"); } });});
db.close();Full SQL Support: Despite its simplicity, SQLite supports most SQL features:
-- Window functions (SQLite 3.25+)SELECT name, price, ROW_NUMBER() OVER (ORDER BY price DESC) as rank, AVG(price) OVER () as avg_priceFROM products;
-- Common Table Expressions (CTEs)WITH RECURSIVE categories AS ( SELECT id, name, parent_id, 0 as level FROM category WHERE parent_id IS NULL
UNION ALL
SELECT c.id, c.name, c.parent_id, cat.level + 1 FROM category c JOIN categories cat ON c.parent_id = cat.id)SELECT * FROM categories;
-- JSON support (SQLite 3.9+)SELECT json_extract(metadata, '$.brand') as brand, json_extract(metadata, '$.specs.ram') as ramFROM productsWHERE json_extract(metadata, '$.category') = 'electronics';Strengths
✅ Zero Configuration: No server setup, no configuration files
✅ Lightweight: Small footprint (~700KB library size)
✅ Fast: Excellent performance for single-user and read-heavy workloads
✅ Portable: Single file can be easily backed up, moved, or shared
✅ ACID Compliant: Full transaction support with ACID guarantees
✅ Embedded: Perfect for applications that need a database without external dependencies
Limitations
❌ Concurrent Writes: Limited write concurrency (database-level locking)
❌ No Network Access: Cannot be accessed over a network (file-based)
❌ Size Limitations: Practical limit around 140TB, but performance degrades with very large databases
❌ Limited User Management: No built-in user authentication or permissions
❌ No Stored Procedures: No support for stored procedures or functions
Ideal Use Cases
- Mobile applications (iOS, Android)
- Desktop applications
- Embedded systems and IoT devices
- Development and testing (quick prototyping)
- Small to medium web applications with low traffic
- Data analysis and reporting tools
- Browser extensions
- Configuration and caching
Feature Comparison
Let’s compare the three databases across key features:
| Feature | PostgreSQL | MySQL | SQLite |
|---|---|---|---|
| Server Process | Required | Required | Not required |
| Concurrent Connections | Excellent | Good | Limited |
| ACID Compliance | Full | Full (InnoDB) | Full |
| JSON Support | Excellent (JSONB) | Good | Good |
| Full-Text Search | Excellent | Good | Basic |
| Window Functions | Full support | Full support | Full support |
| Stored Procedures | Yes (PL/pgSQL) | Yes | No |
| Triggers | Yes | Yes | Yes |
| Views | Yes (materialized) | Yes | Yes |
| Foreign Keys | Yes | Yes (InnoDB) | Yes |
| Transactions | Full | Full (InnoDB) | Full |
| Replication | Built-in | Built-in | No |
| Partitioning | Yes | Yes | No |
| Extensions | Extensive | Limited | No |
| Data Types | Extensive | Standard | Standard |
| Case Sensitivity | Case-sensitive | Configurable | Case-sensitive |
Data Type Comparison
PostgreSQL offers the most extensive type system:
-- PostgreSQL: Advanced typesCREATE TABLE advanced_types ( id SERIAL PRIMARY KEY, uuid_col UUID DEFAULT gen_random_uuid(), jsonb_col JSONB, array_col INTEGER[], range_col INT4RANGE, point_col POINT, polygon_col POLYGON, tsvector_col TSVECTOR, hstore_col HSTORE);MySQL provides standard types with some extensions:
-- MySQL: Standard types with extensionsCREATE TABLE standard_types ( id INT AUTO_INCREMENT PRIMARY KEY, uuid_col CHAR(36), json_col JSON, enum_col ENUM('active', 'inactive', 'pending'), set_col SET('read', 'write', 'execute'), spatial_col POINT);SQLite uses dynamic typing with type affinity:
-- SQLite: Dynamic typingCREATE TABLE flexible_types ( id INTEGER PRIMARY KEY AUTOINCREMENT, -- SQLite uses type affinity, not strict types text_col TEXT, -- Stores as TEXT numeric_col NUMERIC, -- Stores as NUMERIC blob_col BLOB, -- Stores as BLOB real_col REAL -- Stores as REAL);Performance Comparison
Performance characteristics vary significantly based on workload type, data size, and configuration. Here’s a practical comparison:
Read Performance
SQLite: Excellent for single-user read operations
- Fast sequential reads
- No network overhead
- Ideal for read-heavy single-user applications
MySQL: Excellent for read-heavy multi-user applications
- Optimized query cache
- Efficient indexing with MyISAM
- Great for web applications with many concurrent reads
PostgreSQL: Excellent for complex queries
- Advanced query planner
- Efficient handling of complex joins
- Better for analytical workloads
Write Performance
SQLite: Limited by database-level locking
-- SQLite: Write operations block entire databaseBEGIN TRANSACTION;INSERT INTO orders (user_id, total) VALUES (1, 99.99);INSERT INTO order_items (order_id, product_id, quantity) VALUES (1, 5, 2);COMMIT; -- Blocks other writes during transactionMySQL: Good write performance with InnoDB
-- MySQL: Row-level locking with InnoDBBEGIN TRANSACTION;INSERT INTO orders (user_id, total) VALUES (1, 99.99);INSERT INTO order_items (order_id, product_id, quantity) VALUES (1, 5, 2);COMMIT; -- Only locks affected rowsPostgreSQL: Excellent write performance with MVCC
-- PostgreSQL: Multi-Version Concurrency ControlBEGIN TRANSACTION;INSERT INTO orders (user_id, total) VALUES (1, 99.99);INSERT INTO order_items (order_id, product_id, quantity) VALUES (1, 5, 2);COMMIT; -- Non-blocking reads, efficient writesBenchmark Example
Here’s a simple benchmark comparing insert performance:
// Node.js benchmark exampleconst benchmark = async (db, name) => { const start = Date.now();
await db.transaction(async (trx) => { for (let i = 0; i < 1000; i++) { await trx("users").insert({ email: `user${i}@example.com`, name: `User ${i}`, }); } });
const duration = Date.now() - start; console.log(`${name}: ${duration}ms for 1000 inserts`);};
// Typical results (varies by hardware and configuration):// SQLite: ~50-100ms (single file, no network)// MySQL: ~100-200ms (network overhead, but optimized)// PostgreSQL: ~150-250ms (more overhead, but better concurrency)⚠️ Important: Performance benchmarks are highly dependent on:
- Hardware specifications
- Database configuration
- Data size and structure
- Network latency (for server-based databases)
- Concurrent load
Use Case Scenarios
Scenario 1: Small Web Application
Requirements: Blog or small business website, low traffic (< 1000 visitors/day), simple data structure
Recommendation: SQLite
// Express.js with SQLiteconst express = require("express");const sqlite3 = require("sqlite3").verbose();const app = express();
const db = new sqlite3.Database("./blog.db");
// Simple blog post storagedb.serialize(() => { db.run(`CREATE TABLE IF NOT EXISTS posts ( id INTEGER PRIMARY KEY AUTOINCREMENT, title TEXT NOT NULL, content TEXT, published_at DATETIME DEFAULT CURRENT_TIMESTAMP )`);});
app.get("/posts", (req, res) => { db.all("SELECT * FROM posts ORDER BY published_at DESC", (err, rows) => { if (err) { res.status(500).json({ error: err.message }); return; } res.json(rows); });});
app.listen(3000);Why SQLite: Zero configuration, perfect for small applications, easy deployment, no server management needed.
Scenario 2: E-commerce Platform
Requirements: Online store, moderate traffic, transactions, user accounts, product catalog
Recommendation: MySQL or PostgreSQL
// E-commerce with MySQLconst mysql = require("mysql2/promise");
const pool = mysql.createPool({ host: "localhost", user: "root", password: "password", database: "ecommerce", waitForConnections: true, connectionLimit: 10, queueLimit: 0,});
// Transaction exampleasync function createOrder(userId, items) { const connection = await pool.getConnection();
try { await connection.beginTransaction();
// Create order const [orderResult] = await connection.execute( "INSERT INTO orders (user_id, total, status) VALUES (?, ?, ?)", [userId, calculateTotal(items), "pending"], );
const orderId = orderResult.insertId;
// Add order items for (const item of items) { await connection.execute( "INSERT INTO order_items (order_id, product_id, quantity, price) VALUES (?, ?, ?, ?)", [orderId, item.productId, item.quantity, item.price], );
// Update inventory await connection.execute( "UPDATE products SET stock = stock - ? WHERE id = ?", [item.quantity, item.productId], ); }
await connection.commit(); return orderId; } catch (error) { await connection.rollback(); throw error; } finally { connection.release(); }}Why MySQL/PostgreSQL: Need concurrent access, transaction support, user management, and scalability.
Scenario 3: Mobile Application
Requirements: Mobile app (React Native), offline support, local data storage
Recommendation: SQLite
// React Native with react-native-sqlite-storageimport SQLite from "react-native-sqlite-storage";
class DatabaseHelper { static instance = null; static db = null;
static getInstance() { if (!DatabaseHelper.instance) { DatabaseHelper.instance = new DatabaseHelper(); } return DatabaseHelper.instance; }
async initDatabase() { if (DatabaseHelper.db) { return DatabaseHelper.db; }
DatabaseHelper.db = await SQLite.openDatabase({ name: "app.db", location: "default", });
await this.createTables(); return DatabaseHelper.db; }
async createTables() { return new Promise((resolve, reject) => { DatabaseHelper.db.transaction((tx) => { tx.executeSql( `CREATE TABLE IF NOT EXISTS notes ( id INTEGER PRIMARY KEY AUTOINCREMENT, title TEXT NOT NULL, content TEXT, created_at INTEGER NOT NULL )`, [], () => resolve(), (error) => reject(error), ); }); }); }
async createNote(note) { const db = await this.initDatabase(); return new Promise((resolve, reject) => { db.transaction((tx) => { tx.executeSql( "INSERT INTO notes (title, content, created_at) VALUES (?, ?, ?)", [note.title, note.content, Date.now()], (tx, results) => resolve(results.insertId), (error) => reject(error), ); }); }); }
async getAllNotes() { const db = await this.initDatabase(); return new Promise((resolve, reject) => { db.transaction((tx) => { tx.executeSql( "SELECT * FROM notes ORDER BY created_at DESC", [], (tx, results) => { const notes = []; for (let i = 0; i < results.rows.length; i++) { notes.push(results.rows.item(i)); } resolve(notes); }, (error) => reject(error), ); }); }); }}
// Usage in React Native componentconst db = DatabaseHelper.getInstance();
// Create a noteawait db.createNote({ title: "My Note", content: "Note content here",});
// Get all notesconst notes = await db.getAllNotes();Why SQLite: Native mobile support, offline-first, no network required, perfect for local storage. Works seamlessly with React Native and other JavaScript mobile frameworks.
Scenario 4: Data Analytics Platform
Requirements: Complex queries, aggregations, reporting, large datasets
Recommendation: PostgreSQL
-- Analytics queries with PostgreSQL-- Window functions for rankingsSELECT product_id, SUM(quantity) as total_sold, RANK() OVER (ORDER BY SUM(quantity) DESC) as sales_rank, LAG(SUM(quantity)) OVER (ORDER BY date) as previous_day_sales, AVG(SUM(quantity)) OVER ( ORDER BY date ROWS BETWEEN 6 PRECEDING AND CURRENT ROW ) as seven_day_avgFROM salesWHERE sale_date >= CURRENT_DATE - INTERVAL '30 days'GROUP BY product_id, dateORDER BY total_sold DESC;
-- JSONB for flexible schemaSELECT user_id, jsonb_array_elements(metadata->'purchases') as purchase, (metadata->>'lifetime_value')::numeric as ltvFROM usersWHERE metadata @> '{"premium": true}';
-- Full-text searchSELECT title, content, ts_rank_cd( to_tsvector('english', title || ' ' || content), plainto_tsquery('english', 'search query') ) as relevanceFROM articlesWHERE to_tsvector('english', title || ' ' || content) @@ plainto_tsquery('english', 'search query')ORDER BY relevance DESC;Why PostgreSQL: Advanced SQL features, excellent query planner, JSON support, extensibility for analytics.
Migration Strategies
Migrating from SQLite to PostgreSQL/MySQL
When your application outgrows SQLite, migration is straightforward:
// Migration script: SQLite to PostgreSQLconst sqlite3 = require("sqlite3").verbose();const { Client } = require("pg");
async function migrateSQLiteToPostgreSQL(sqlitePath, pgConfig) { const sqliteDb = new sqlite3.Database(sqlitePath); const pgClient = new Client(pgConfig);
await pgClient.connect();
// Get all tables from SQLite sqliteDb.all( "SELECT name FROM sqlite_master WHERE type='table'", async (err, tables) => { for (const table of tables) { // Get table schema sqliteDb.all( `PRAGMA table_info(${table.name})`, async (err, columns) => { // Create table in PostgreSQL const createTableSQL = generateCreateTableSQL(table.name, columns); await pgClient.query(createTableSQL);
// Migrate data sqliteDb.all(`SELECT * FROM ${table.name}`, async (err, rows) => { for (const row of rows) { const insertSQL = generateInsertSQL(table.name, row); await pgClient.query(insertSQL, Object.values(row)); } }); }, ); } }, );}
function generateCreateTableSQL(tableName, columns) { const columnDefs = columns .map((col) => { let type = mapSQLiteTypeToPostgreSQL(col.type); if (col.pk) type += " PRIMARY KEY"; if (col.notnull && !col.pk) type += " NOT NULL"; return `${col.name} ${type}`; }) .join(", ");
return `CREATE TABLE ${tableName} (${columnDefs})`;}
function mapSQLiteTypeToPostgreSQL(sqliteType) { const typeMap = { INTEGER: "INTEGER", TEXT: "TEXT", REAL: "REAL", BLOB: "BYTEA", NUMERIC: "NUMERIC", }; return typeMap[sqliteType.toUpperCase()] || "TEXT";}Migrating from MySQL to PostgreSQL
-- MySQL to PostgreSQL migration considerations
-- 1. AUTO_INCREMENT → SERIAL-- MySQL:CREATE TABLE users ( id INT AUTO_INCREMENT PRIMARY KEY);
-- PostgreSQL:CREATE TABLE users ( id SERIAL PRIMARY KEY);
-- 2. ENUM types-- MySQL:CREATE TABLE status ( value ENUM('active', 'inactive', 'pending'));
-- PostgreSQL:CREATE TYPE status_type AS ENUM ('active', 'inactive', 'pending');CREATE TABLE status ( value status_type);
-- 3. String concatenation-- MySQL:SELECT CONCAT(first_name, ' ', last_name) as full_name FROM users;
-- PostgreSQL:SELECT first_name || ' ' || last_name as full_name FROM users;
-- 4. Date functions-- MySQL:SELECT DATE_FORMAT(created_at, '%Y-%m-%d') FROM orders;
-- PostgreSQL:SELECT TO_CHAR(created_at, 'YYYY-MM-DD') FROM orders;
-- 5. LIMIT/OFFSET syntax (same, but different behavior)-- Both:SELECT * FROM products LIMIT 10 OFFSET 20;💡 Tip: Use migration tools like pgloader for automated MySQL to PostgreSQL migrations, or Flyway for version-controlled database migrations.
Best Practices
PostgreSQL Best Practices
-- 1. Use appropriate data typesCREATE TABLE users ( id SERIAL PRIMARY KEY, -- Not INT email VARCHAR(255) UNIQUE NOT NULL, -- Not TEXT for emails created_at TIMESTAMPTZ DEFAULT NOW() -- Use TIMESTAMPTZ, not TIMESTAMP);
-- 2. Create indexes strategicallyCREATE INDEX CONCURRENTLY idx_users_email ON users(email);CREATE INDEX idx_users_created_at ON users(created_at DESC);
-- 3. Use EXPLAIN ANALYZE for query optimizationEXPLAIN ANALYZESELECT * FROM ordersWHERE user_id = 123ORDER BY created_at DESCLIMIT 10;
-- 4. Use connection pooling-- In application code (Node.js example)const { Pool } = require('pg');const pool = new Pool({ max: 20, // Maximum connections idleTimeoutMillis: 30000, connectionTimeoutMillis: 2000,});
-- 5. Use prepared statementsconst query = { text: 'SELECT * FROM users WHERE email = $1', values: ['user@example.com']};await pool.query(query);MySQL Best Practices
-- 1. Choose the right storage engineCREATE TABLE orders ( id INT AUTO_INCREMENT PRIMARY KEY, -- Use InnoDB for transactions) ENGINE=InnoDB;
CREATE TABLE logs ( id INT AUTO_INCREMENT PRIMARY KEY, -- Use MyISAM for read-heavy, no transactions) ENGINE=MyISAM;
-- 2. Configure InnoDB properly-- In my.cnf:[mysqld]innodb_buffer_pool_size = 1G -- 70-80% of RAMinnodb_log_file_size = 256Minnodb_flush_log_at_trx_commit = 2 -- For better performance
-- 3. Use indexes effectivelyCREATE INDEX idx_user_email ON users(email);CREATE INDEX idx_order_user_date ON orders(user_id, created_at);
-- 4. Use connection pooling-- In application codeconst mysql = require('mysql2/promise');const pool = mysql.createPool({ host: 'localhost', user: 'root', password: 'password', database: 'app', waitForConnections: true, connectionLimit: 10, queueLimit: 0});
-- 5. Enable query cache for read-heavy workloadsSET GLOBAL query_cache_size = 67108864; -- 64MBSET GLOBAL query_cache_type = 1;SQLite Best Practices
// 1. Use WAL mode for better concurrencyconst db = new sqlite3.Database("./app.db");db.run("PRAGMA journal_mode = WAL"); // Write-Ahead Loggingdb.run("PRAGMA synchronous = NORMAL"); // Balance safety and performance
// 2. Use transactions for bulk operationsdb.serialize(() => { db.run("BEGIN TRANSACTION");
const stmt = db.prepare("INSERT INTO users (email, name) VALUES (?, ?)"); for (let i = 0; i < 1000; i++) { stmt.run(`user${i}@example.com`, `User ${i}`); } stmt.finalize();
db.run("COMMIT");});
// 3. Create indexes for frequently queried columnsdb.run("CREATE INDEX IF NOT EXISTS idx_users_email ON users(email)");
// 4. Use prepared statementsconst stmt = db.prepare("SELECT * FROM users WHERE email = ?");stmt.get("user@example.com", (err, row) => { console.log(row);});stmt.finalize();
// 5. Vacuum periodically to reclaim spacedb.run("VACUUM");
// 6. Set appropriate page size and cache sizedb.run("PRAGMA page_size = 4096"); // Larger page size for better performancedb.run("PRAGMA cache_size = -64000"); // 64MB cache (negative = KB)General Database Best Practices
✅ Always Use Transactions: Wrap related operations in transactions to maintain data integrity
✅ Use Parameterized Queries: Prevent SQL injection attacks
✅ Create Indexes Strategically: Index foreign keys and frequently queried columns
✅ Monitor Performance: Use EXPLAIN/EXPLAIN ANALYZE to understand query execution
✅ Backup Regularly: Implement automated backup strategies
✅ Use Connection Pooling: Manage database connections efficiently
✅ Normalize Data: Follow database normalization principles (but denormalize when needed for performance)
✅ Version Control Migrations: Use migration tools to version your database schema
Conclusion
Choosing between PostgreSQL, MySQL, and SQLite depends on your specific requirements, scale, and use case. Each database excels in different scenarios:
-
SQLite is perfect for embedded applications, mobile apps, small websites, and development/testing. Its zero-configuration approach and file-based storage make it ideal when you need a database without the overhead of a server process.
-
MySQL remains the go-to choice for web applications, especially those built with PHP or requiring simple, reliable database operations. Its massive ecosystem, excellent performance, and ease of use make it a solid choice for most web projects.
-
PostgreSQL shines when you need advanced features, complex queries, strict SQL compliance, or extensibility. It’s the best choice for applications requiring JSON/document storage, geographic data, or sophisticated data analysis.
Remember that you’re not locked into one choice forever. Many successful applications start with SQLite for prototyping, migrate to MySQL for initial production, and eventually move to PostgreSQL as they scale and require more advanced features. The key is understanding your current needs and choosing the database that best fits your requirements today, while keeping migration paths open for the future.
For related topics, check out our guides on GraphQL vs REST API for API design decisions, and Web Performance Optimization for optimizing database queries in web applications.
Whether you’re building a simple blog or a complex enterprise application, understanding these three databases will help you make informed decisions that set your project up for success.