MongoDB vs PostgreSQL: NoSQL vs SQL Database Selection Guide
Compare MongoDB and PostgreSQL to choose the right database. Learn when to use NoSQL vs SQL, data modeling differences, performance trade-offs, and migration strategies.
Table of Contents
- Introduction
- Understanding Database Paradigms
- MongoDB: Document-Oriented NoSQL Database
- PostgreSQL: Advanced Relational Database
- Data Modeling Comparison
- Query Language and API Comparison
- Performance Comparison
- Scalability and Architecture
- ACID Compliance and Transactions
- Use Case Scenarios
- Migration Strategies
- Best Practices
- Conclusion
Introduction
Choosing between MongoDB and PostgreSQL is one of the most fundamental decisions in modern application development. This choice represents more than selecting a database—it’s choosing between two different paradigms: the flexible, document-oriented NoSQL approach of MongoDB versus the structured, relational SQL approach of PostgreSQL.
MongoDB, introduced in 2009, revolutionized database design by offering a schema-less, JSON-like document model that aligns naturally with modern application development. PostgreSQL, with roots dating back to 1986, has evolved into one of the most advanced open-source relational databases, offering ACID compliance, complex queries, and extensive data types.
Both databases are production-ready, widely adopted, and capable of handling enterprise-scale applications. However, they excel in different scenarios. MongoDB shines when you need flexible schemas, rapid development, and horizontal scaling for document-heavy workloads. PostgreSQL excels when you require complex relationships, strong consistency guarantees, and sophisticated querying capabilities.
Understanding their differences, strengths, and trade-offs will help you make an informed decision that aligns with your application’s data structure, query patterns, scalability requirements, and consistency needs. This guide will provide practical examples, performance insights, and real-world use cases to help you choose the right database for your project.
Understanding Database Paradigms
Before diving into MongoDB and PostgreSQL specifics, it’s essential to understand the fundamental differences between NoSQL and SQL database paradigms.
SQL (Relational) Databases
SQL databases, also known as relational database management systems (RDBMS), organize data into tables with predefined schemas. Data is stored in rows and columns, with relationships between tables maintained through foreign keys. This structure enforces data integrity and consistency through constraints, transactions, and ACID properties.
Key characteristics:
- Structured schema with tables, rows, and columns
- Relationships enforced through foreign keys
- ACID transactions for data consistency
- SQL query language for complex queries
- Normalized data structure to reduce redundancy
NoSQL (Non-Relational) Databases
NoSQL databases come in several forms: document stores (like MongoDB), key-value stores, column-family stores, and graph databases. They prioritize flexibility, scalability, and performance over strict consistency guarantees.
Key characteristics:
- Flexible or schema-less data models
- Horizontal scalability (sharding)
- Optimized for specific access patterns
- Often eventual consistency (though MongoDB supports transactions)
- Various query languages or APIs
When Each Paradigm Makes Sense
Choose SQL (PostgreSQL) when:
- Your data has clear relationships and structure
- You need complex queries with joins across multiple tables
- ACID compliance is critical
- Data integrity and consistency are paramount
- You’re building financial, healthcare, or compliance-heavy applications
Choose NoSQL (MongoDB) when:
- Your data structure is flexible or changes frequently
- You need rapid development and iteration
- Horizontal scaling is a primary concern
- Your data is document-oriented (JSON-like structures)
- You’re building content management, logging, or real-time analytics systems
MongoDB: Document-Oriented NoSQL Database
MongoDB is a document-oriented database that stores data in BSON (Binary JSON) format. Documents are organized into collections, similar to tables in relational databases, but without enforced schemas.
Core Concepts
Documents: The basic unit of data in MongoDB, similar to rows in SQL databases but stored as JSON-like objects:
// Example MongoDB document{ _id: ObjectId("507f1f77bcf86cd799439011"), name: "John Doe", email: "john@example.com", age: 30, address: { street: "123 Main St", city: "New York", zipCode: "10001" }, hobbies: ["reading", "coding", "hiking"], createdAt: ISODate("2024-01-15T10:30:00Z")}Collections: Groups of documents, similar to tables but without schema enforcement:
// MongoDB collections are created implicitlydb.users.insertOne({ name: "Jane Smith", email: "jane@example.com",});
// No schema definition needed - documents can have different structuresdb.users.insertOne({ name: "Bob Johnson", email: "bob@example.com", age: 25, phone: "+1234567890", // Different structure, no problem});Key Features
1. Flexible Schema Design
MongoDB’s schema-less nature allows documents in the same collection to have different structures:
// All valid in the same collectiondb.products.insertMany([ { name: "Laptop", price: 999.99, specifications: { cpu: "Intel i7", ram: "16GB", storage: "512GB SSD", }, }, { name: "Book", price: 19.99, author: "Jane Author", pages: 300, isbn: "978-0123456789", },]);2. Rich Query Language
MongoDB provides a powerful query API with support for filtering, projection, aggregation, and more:
// Find documents matching criteriadb.users.find({ age: { $gte: 18, $lte: 65 }, city: "New York",});
// Complex queries with operatorsdb.orders.find({ $or: [{ status: "pending" }, { total: { $gt: 100 } }], createdAt: { $gte: new Date("2024-01-01") },});
// Aggregation pipeline for complex data processingdb.orders.aggregate([ { $match: { status: "completed" } }, { $group: { _id: "$customerId", totalSpent: { $sum: "$total" }, orderCount: { $sum: 1 }, }, }, { $sort: { totalSpent: -1 } }, { $limit: 10 },]);3. Horizontal Scaling (Sharding)
MongoDB supports automatic sharding to distribute data across multiple servers:
// Enable sharding for a databasesh.enableSharding("ecommerce");
// Shard a collection by a shard keysh.shardCollection("ecommerce.orders", { customerId: 1 });
// MongoDB automatically distributes documents across shards// based on the shard key value4. Indexing for Performance
MongoDB supports various index types for query optimization:
// Create indexesdb.users.createIndex({ email: 1 }); // Single field indexdb.users.createIndex({ name: 1, age: -1 }); // Compound indexdb.users.createIndex({ location: "2dsphere" }); // Geospatial indexdb.users.createIndex({ "$**": "text" }); // Text search index
// Index usage in queriesdb.users.find({ email: "john@example.com" }).explain("executionStats");5. Replication and High Availability
MongoDB replica sets provide automatic failover and data redundancy:
// Replica set configuration (typically done via config file)// Primary node handles writes// Secondary nodes replicate data and can handle reads
// Read from secondary for read scalingdb.users.find().readPref("secondary");MongoDB Advantages
✅ Schema Flexibility: Adapt to changing requirements without migrations ✅ Developer Experience: Natural fit for JavaScript/Node.js applications ✅ Horizontal Scaling: Built-in sharding for massive scale ✅ Rapid Development: No schema migrations needed during development ✅ Rich Data Types: Supports arrays, nested objects, and various data types ✅ JSON-like Structure: Aligns with modern API data formats
MongoDB Limitations
❌ No Joins: Must use application-level joins or denormalize data ❌ Consistency Trade-offs: Eventual consistency by default (though transactions available) ❌ Memory Usage: Entire documents loaded into memory ❌ Query Complexity: Complex relational queries can be challenging ❌ Schema Enforcement: No built-in schema validation (requires application-level or JSON Schema)
PostgreSQL: Advanced Relational Database
PostgreSQL is a powerful, open-source object-relational database system known for its standards compliance, extensibility, and advanced features. It combines the reliability of SQL with modern capabilities like JSON support, full-text search, and advanced indexing.
Core Concepts
Tables: Structured data storage with enforced schemas:
-- Create a table with schema definitionCREATE TABLE users ( id SERIAL PRIMARY KEY, name VARCHAR(100) NOT NULL, email VARCHAR(255) UNIQUE NOT NULL, age INTEGER CHECK (age >= 0), created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP);
-- Insert data (must match schema)INSERT INTO users (name, email, age)VALUES ('John Doe', 'john@example.com', 30);Relationships: Foreign keys enforce referential integrity:
-- Create related tables with foreign key relationshipsCREATE TABLE orders ( id SERIAL PRIMARY KEY, user_id INTEGER NOT NULL REFERENCES users(id) ON DELETE CASCADE, total DECIMAL(10, 2) NOT NULL, status VARCHAR(50) DEFAULT 'pending', created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP);
CREATE TABLE order_items ( id SERIAL PRIMARY KEY, order_id INTEGER NOT NULL REFERENCES orders(id) ON DELETE CASCADE, product_id INTEGER NOT NULL, quantity INTEGER NOT NULL CHECK (quantity > 0), price DECIMAL(10, 2) NOT NULL);Key Features
1. ACID Compliance
PostgreSQL guarantees ACID properties for all transactions:
-- Transaction example with rollback on errorBEGIN;
INSERT INTO users (name, email) VALUES ('Alice', 'alice@example.com');INSERT INTO orders (user_id, total) VALUES (1, 99.99);
-- If any operation fails, entire transaction rolls backCOMMIT;
-- Or explicitly rollbackROLLBACK;2. Complex Queries with JOINs
PostgreSQL excels at relational queries:
-- Join multiple tablesSELECT u.name, u.email, o.id AS order_id, o.total, o.status, COUNT(oi.id) AS item_countFROM users uINNER JOIN orders o ON u.id = o.user_idLEFT JOIN order_items oi ON o.id = oi.order_idWHERE o.created_at >= '2024-01-01'GROUP BY u.id, u.name, u.email, o.id, o.total, o.statusHAVING COUNT(oi.id) > 0ORDER BY o.total DESC;3. Advanced Data Types
PostgreSQL supports extensive data types beyond standard SQL:
-- JSON/JSONB supportCREATE TABLE products ( id SERIAL PRIMARY KEY, name VARCHAR(255), metadata JSONB, -- Binary JSON for better performance tags TEXT[] -- Array type);
-- Query JSON dataINSERT INTO products (name, metadata, tags)VALUES ( 'Laptop', '{"specs": {"cpu": "Intel i7", "ram": "16GB"}}'::jsonb, ARRAY['electronics', 'computers']);
SELECT name, metadata->'specs'->>'cpu' AS cpuFROM productsWHERE metadata @> '{"specs": {"ram": "16GB"}}';4. Full-Text Search
Built-in full-text search capabilities:
-- Create full-text search indexCREATE TABLE articles ( id SERIAL PRIMARY KEY, title VARCHAR(255), content TEXT, tsvector_content tsvector -- Full-text search vector);
CREATE INDEX idx_articles_search ON articles USING GIN (tsvector_content);
-- Update tsvectorUPDATE articlesSET tsvector_content = to_tsvector('english', title || ' ' || content);
-- Full-text search querySELECT title, contentFROM articlesWHERE tsvector_content @@ to_tsquery('english', 'database & performance');5. Extensibility
PostgreSQL supports extensions and custom functions:
-- Enable extensionsCREATE EXTENSION IF NOT EXISTS "uuid-ossp";CREATE EXTENSION IF NOT EXISTS "pg_trgm"; -- Trigram similarity
-- Use UUID extensionCREATE TABLE sessions ( id UUID PRIMARY KEY DEFAULT uuid_generate_v4(), user_id INTEGER REFERENCES users(id), expires_at TIMESTAMP);
-- Custom functionsCREATE OR REPLACE FUNCTION get_user_order_total(user_id_param INTEGER)RETURNS DECIMAL AS $$ SELECT COALESCE(SUM(total), 0) FROM orders WHERE user_id = user_id_param AND status = 'completed';$$ LANGUAGE SQL;6. Advanced Indexing
PostgreSQL offers multiple index types for different use cases:
-- B-tree index (default)CREATE INDEX idx_users_email ON users(email);
-- GIN index for JSONB and arraysCREATE INDEX idx_products_metadata ON products USING GIN(metadata);
-- GiST index for geometric dataCREATE INDEX idx_locations_coords ON locations USING GIST(coordinates);
-- Partial index (index subset of data)CREATE INDEX idx_active_users ON users(email) WHERE active = true;PostgreSQL Advantages
✅ ACID Compliance: Strong consistency guarantees ✅ Complex Queries: Powerful JOIN operations and subqueries ✅ Data Integrity: Foreign keys, constraints, and triggers ✅ Extensibility: Rich ecosystem of extensions ✅ JSON Support: Can handle document-like data when needed ✅ Mature Ecosystem: Extensive tooling and community support ✅ Standards Compliance: SQL standard compliance
PostgreSQL Limitations
❌ Vertical Scaling: Primarily scales vertically (though supports read replicas) ❌ Schema Rigidity: Schema changes require migrations ❌ Complex Setup: More configuration needed for optimal performance ❌ Join Overhead: Complex joins can be expensive at scale ❌ Development Speed: Schema changes slow down rapid iteration
Data Modeling Comparison
The fundamental difference between MongoDB and PostgreSQL lies in how they model and store data. Understanding these differences is crucial for making the right choice.
MongoDB: Document Model
MongoDB uses a denormalized, document-oriented approach where related data is often embedded within documents:
// Denormalized approach - embed related datadb.orders.insertOne({ _id: ObjectId("507f1f77bcf86cd799439011"), orderNumber: "ORD-001", customer: { id: ObjectId("507f191e810c19729de860ea"), name: "John Doe", email: "john@example.com", }, items: [ { productId: ObjectId("507f191e810c19729de860eb"), name: "Laptop", price: 999.99, quantity: 1, }, { productId: ObjectId("507f191e810c19729de860ec"), name: "Mouse", price: 29.99, quantity: 2, }, ], total: 1059.97, status: "pending", createdAt: ISODate("2024-01-15T10:30:00Z"),});
// Or normalized approach with referencesdb.orders.insertOne({ _id: ObjectId("507f1f77bcf86cd799439012"), orderNumber: "ORD-002", customerId: ObjectId("507f191e810c19729de860ea"), itemIds: [ ObjectId("507f191e810c19729de860eb"), ObjectId("507f191e810c19729de860ec"), ], total: 1059.97, status: "pending",});
// Application-level join requiredconst order = db.orders.findOne({ orderNumber: "ORD-002" });const customer = db.users.findOne({ _id: order.customerId });const items = db.products.find({ _id: { $in: order.itemIds } }).toArray();PostgreSQL: Relational Model
PostgreSQL uses a normalized approach with separate tables and relationships:
-- Normalized schema with relationshipsCREATE TABLE customers ( id SERIAL PRIMARY KEY, name VARCHAR(100) NOT NULL, email VARCHAR(255) UNIQUE NOT NULL);
CREATE TABLE products ( id SERIAL PRIMARY KEY, name VARCHAR(255) NOT NULL, price DECIMAL(10, 2) NOT NULL);
CREATE TABLE orders ( id SERIAL PRIMARY KEY, order_number VARCHAR(50) UNIQUE NOT NULL, customer_id INTEGER NOT NULL REFERENCES customers(id), total DECIMAL(10, 2) NOT NULL, status VARCHAR(50) DEFAULT 'pending', created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP);
CREATE TABLE order_items ( id SERIAL PRIMARY KEY, order_id INTEGER NOT NULL REFERENCES orders(id) ON DELETE CASCADE, product_id INTEGER NOT NULL REFERENCES products(id), quantity INTEGER NOT NULL CHECK (quantity > 0), price DECIMAL(10, 2) NOT NULL);
-- Query with automatic joinsSELECT o.order_number, c.name AS customer_name, c.email, p.name AS product_name, oi.quantity, oi.price, o.total, o.statusFROM orders oINNER JOIN customers c ON o.customer_id = c.idINNER JOIN order_items oi ON o.id = oi.order_idINNER JOIN products p ON oi.product_id = p.idWHERE o.order_number = 'ORD-002';Modeling Decision Factors
Choose MongoDB’s Document Model When:
- Data is naturally hierarchical or tree-like
- Related data is accessed together frequently
- Schema changes are frequent
- Read performance is more important than write consistency
- Data doesn’t have complex many-to-many relationships
Choose PostgreSQL’s Relational Model When:
- Data has clear relationships and structure
- You need to query across multiple entities frequently
- Data integrity and consistency are critical
- You need complex analytical queries
- Normalization reduces data redundancy significantly
Hybrid Approaches
Both databases can handle the other’s paradigm to some extent:
PostgreSQL with JSON:
-- Store flexible document data in PostgreSQLCREATE TABLE user_profiles ( id SERIAL PRIMARY KEY, user_id INTEGER REFERENCES users(id), preferences JSONB, -- Flexible document data metadata JSONB);
-- Query JSON data with relational queriesSELECT u.name, up.preferences->>'theme' AS themeFROM users uJOIN user_profiles up ON u.id = up.user_idWHERE up.preferences @> '{"notifications": true}';MongoDB with References:
// Use references when normalization makes sensedb.authors.insertOne({ _id: ObjectId("507f191e810c19729de860ea"), name: "Jane Author", bio: "Expert in databases",});
db.books.insertMany([ { title: "Database Design", authorId: ObjectId("507f191e810c19729de860ea"), isbn: "978-0123456789", }, { title: "Advanced Queries", authorId: ObjectId("507f191e810c19729de860ea"), isbn: "978-0123456790", },]);
// Application-level joinconst author = db.authors.findOne({ _id: ObjectId("507f191e810c19729de860ea"),});const books = db.books.find({ authorId: author._id }).toArray();Query Language and API Comparison
The way you interact with MongoDB and PostgreSQL differs significantly, reflecting their underlying paradigms.
MongoDB Query API
MongoDB uses a method-based API with JavaScript-like syntax:
// Basic CRUD operations// Createdb.users.insertOne({ name: "John Doe", email: "john@example.com", age: 30,});
db.users.insertMany([ { name: "Alice", email: "alice@example.com", age: 25 }, { name: "Bob", email: "bob@example.com", age: 35 },]);
// Readdb.users.findOne({ email: "john@example.com" });db.users.find({ age: { $gte: 30 } });db.users .find({ age: { $gte: 30 } }) .limit(10) .sort({ name: 1 });
// Updatedb.users.updateOne({ email: "john@example.com" }, { $set: { age: 31 } });
db.users.updateMany({ age: { $lt: 18 } }, { $set: { status: "minor" } });
// Deletedb.users.deleteOne({ email: "john@example.com" });db.users.deleteMany({ status: "inactive" });Aggregation Pipeline:
// Complex data processing with aggregation pipelinedb.orders.aggregate([ // Stage 1: Match filter { $match: { status: "completed", createdAt: { $gte: new Date("2024-01-01") }, }, }, // Stage 2: Unwind array { $unwind: "$items", }, // Stage 3: Group and calculate { $group: { _id: "$items.productId", totalQuantity: { $sum: "$items.quantity" }, totalRevenue: { $sum: { $multiply: ["$items.price", "$items.quantity"] }, }, orderCount: { $sum: 1 }, }, }, // Stage 4: Lookup related data { $lookup: { from: "products", localField: "_id", foreignField: "_id", as: "product", }, }, // Stage 5: Unwind lookup result { $unwind: "$product", }, // Stage 6: Project final shape { $project: { productName: "$product.name", totalQuantity: 1, totalRevenue: 1, orderCount: 1, averageOrderValue: { $divide: ["$totalRevenue", "$orderCount"] }, }, }, // Stage 7: Sort { $sort: { totalRevenue: -1 }, }, // Stage 8: Limit { $limit: 10, },]);PostgreSQL SQL Queries
PostgreSQL uses standard SQL with powerful extensions:
-- Basic CRUD operations-- CreateINSERT INTO users (name, email, age)VALUES ('John Doe', 'john@example.com', 30);
INSERT INTO users (name, email, age)VALUES ('Alice', 'alice@example.com', 25), ('Bob', 'bob@example.com', 35);
-- ReadSELECT * FROM users WHERE email = 'john@example.com';SELECT * FROM users WHERE age >= 30 LIMIT 10 ORDER BY name ASC;
-- UpdateUPDATE users SET age = 31 WHERE email = 'john@example.com';UPDATE users SET status = 'minor' WHERE age < 18;
-- DeleteDELETE FROM users WHERE email = 'john@example.com';DELETE FROM users WHERE status = 'inactive';Complex Queries with JOINs:
-- Equivalent aggregation using SQLSELECT p.id AS product_id, p.name AS product_name, SUM(oi.quantity) AS total_quantity, SUM(oi.price * oi.quantity) AS total_revenue, COUNT(DISTINCT o.id) AS order_count, AVG(oi.price * oi.quantity) AS average_order_valueFROM orders oINNER JOIN order_items oi ON o.id = oi.order_idINNER JOIN products p ON oi.product_id = p.idWHERE o.status = 'completed' AND o.created_at >= '2024-01-01'GROUP BY p.id, p.nameORDER BY total_revenue DESCLIMIT 10;Advanced SQL Features:
-- Window functionsSELECT name, email, age, ROW_NUMBER() OVER (PARTITION BY age ORDER BY name) AS age_rank, AVG(age) OVER () AS average_ageFROM users;
-- Common Table Expressions (CTEs)WITH user_orders AS ( SELECT u.id, u.name, COUNT(o.id) AS order_count, SUM(o.total) AS total_spent FROM users u LEFT JOIN orders o ON u.id = o.user_id GROUP BY u.id, u.name),top_customers AS ( SELECT * FROM user_orders WHERE total_spent > 1000 ORDER BY total_spent DESC LIMIT 10)SELECT * FROM top_customers;
-- SubqueriesSELECT name, emailFROM usersWHERE id IN ( SELECT DISTINCT customer_id FROM orders WHERE total > 500);Query Performance Considerations
MongoDB:
- Indexes are crucial for query performance
- Aggregation pipeline can be optimized with indexes
- Sharding distributes query load
- Document size affects read performance
// Explain query execution plandb.users.find({ email: "john@example.com" }).explain("executionStats");
// Create compound index for common query patternsdb.orders.createIndex({ customerId: 1, createdAt: -1 });
// Use projection to limit returned fieldsdb.users.find({ age: { $gte: 30 } }, { name: 1, email: 1 });PostgreSQL:
- Query planner optimizes execution automatically
- Indexes improve JOIN and WHERE clause performance
- EXPLAIN ANALYZE shows execution plan
- Connection pooling important for concurrent queries
-- Analyze query execution planEXPLAIN ANALYZESELECT * FROM users WHERE email = 'john@example.com';
-- Create indexes for common query patternsCREATE INDEX idx_orders_customer_createdON orders(customer_id, created_at DESC);
-- Use SELECT specific columns instead of SELECT *SELECT name, email FROM users WHERE age >= 30;Performance Comparison
Performance characteristics differ significantly between MongoDB and PostgreSQL, influenced by data structure, query patterns, and scaling approaches.
Read Performance
MongoDB Read Performance:
// Single document read (very fast with index)db.users.findOne({ email: "john@example.com" });// Typically < 1ms with proper index
// Range query with indexdb.orders .find({ customerId: ObjectId("507f191e810c19729de860ea"), createdAt: { $gte: new Date("2024-01-01") }, }) .sort({ createdAt: -1 });// Fast with compound index on (customerId, createdAt)
// Aggregation pipeline performancedb.orders.aggregate([ { $match: { status: "completed" } }, { $group: { _id: "$customerId", total: { $sum: "$total" } } },]);// Performance depends on indexes and data volumePostgreSQL Read Performance:
-- Single row read (very fast with index)SELECT * FROM users WHERE email = 'john@example.com';-- Typically < 1ms with B-tree index
-- JOIN query performanceSELECT u.*, o.*FROM users uINNER JOIN orders o ON u.id = o.customer_idWHERE u.email = 'john@example.com';-- Performance depends on JOIN algorithm and indexes
-- Complex analytical querySELECT customer_id, SUM(total) AS total_spent, COUNT(*) AS order_countFROM ordersWHERE status = 'completed'GROUP BY customer_id;-- Can be optimized with indexes and materialized viewsWrite Performance
MongoDB Write Performance:
// Single document insertdb.users.insertOne({ name: "John Doe", email: "john@example.com",});// Very fast, typically < 1ms
// Bulk insertdb.users.insertMany( [ { name: "User1", email: "user1@example.com" }, { name: "User2", email: "user2@example.com" }, // ... thousands more ], { ordered: false },);// Can achieve 10,000+ inserts/second
// Update operationsdb.users.updateMany( { status: "inactive" }, { $set: { lastLogin: new Date() } },);// Performance depends on matching documents and indexesPostgreSQL Write Performance:
-- Single row insertINSERT INTO users (name, email) VALUES ('John Doe', 'john@example.com');-- Fast, typically < 1ms
-- Bulk insertINSERT INTO users (name, email)VALUES ('User1', 'user1@example.com'), ('User2', 'user2@example.com'); -- ... more rows-- Can achieve high throughput with COPY command
-- COPY for bulk loading (fastest method)COPY users (name, email) FROM '/path/to/file.csv' WITH CSV;-- Can achieve 100,000+ rows/second
-- Update with transactionBEGIN;UPDATE users SET last_login = NOW() WHERE status = 'inactive';COMMIT;-- ACID guarantees add overhead but ensure consistencyPerformance Benchmarks Considerations
⚠️ Important: Performance varies significantly based on:
- Hardware configuration (CPU, RAM, storage type)
- Data volume and document/row size
- Index strategy
- Query patterns
- Network latency
- Concurrent load
General Performance Characteristics:
| Operation | MongoDB | PostgreSQL | Notes |
|---|---|---|---|
| Single document/row read | Very Fast | Very Fast | Both excel with proper indexes |
| Complex JOINs | N/A (app-level) | Fast | PostgreSQL advantage |
| Aggregation/Analytics | Fast | Very Fast | PostgreSQL often faster for complex queries |
| Bulk inserts | Very Fast | Fast | MongoDB slightly faster |
| Updates | Fast | Fast | Similar performance |
| Transactions | Fast (v4.0+) | Very Fast | PostgreSQL has longer history |
| Horizontal scaling | Excellent | Limited | MongoDB advantage |
Optimization Strategies
MongoDB Optimization:
// 1. Create appropriate indexesdb.users.createIndex({ email: 1 }, { unique: true });db.orders.createIndex({ customerId: 1, createdAt: -1 });
// 2. Use projection to limit returned datadb.users.find({ age: { $gte: 30 } }, { name: 1, email: 1 });
// 3. Use aggregation pipeline efficientlydb.orders.aggregate([ { $match: { status: "completed" } }, // Early filtering { $group: { _id: "$customerId", total: { $sum: "$total" } } }, { $sort: { total: -1 } }, { $limit: 10 },]);
// 4. Enable read preferences for replica setsdb.users.find().readPref("secondaryPreferred");
// 5. Use bulk operationsconst bulkOps = users.map((user) => ({ updateOne: { filter: { email: user.email }, update: { $set: user }, upsert: true, },}));db.users.bulkWrite(bulkOps);PostgreSQL Optimization:
-- 1. Create appropriate indexesCREATE INDEX idx_users_email ON users(email);CREATE INDEX idx_orders_customer_created ON orders(customer_id, created_at DESC);
-- 2. Use EXPLAIN ANALYZE to optimize queriesEXPLAIN ANALYZESELECT * FROM users WHERE email = 'john@example.com';
-- 3. Use materialized views for expensive queriesCREATE MATERIALIZED VIEW customer_totals ASSELECT customer_id, SUM(total) AS total_spent, COUNT(*) AS order_countFROM ordersWHERE status = 'completed'GROUP BY customer_id;
CREATE UNIQUE INDEX ON customer_totals(customer_id);REFRESH MATERIALIZED VIEW CONCURRENTLY customer_totals;
-- 4. Use connection pooling (application level)-- PgBouncer or application-level pooling
-- 5. Optimize JOINs with proper indexesCREATE INDEX idx_order_items_order ON order_items(order_id);CREATE INDEX idx_order_items_product ON order_items(product_id);Scalability and Architecture
Scalability approaches differ fundamentally between MongoDB and PostgreSQL, reflecting their design philosophies.
MongoDB: Horizontal Scaling
MongoDB is designed for horizontal scaling through sharding:
// Sharding configuration// 1. Enable sharding on databasesh.enableSharding("ecommerce");
// 2. Create sharded collection with shard keysh.shardCollection("ecommerce.orders", { customerId: 1 });
// 3. MongoDB automatically distributes data// Documents with customerId hash to different shards
// Query routing// MongoDB automatically routes queries to correct shardsdb.orders.find({ customerId: ObjectId("507f191e810c19729de860ea") });// Routed to specific shard based on shard key
// Scatter-gather queriesdb.orders.find({ status: "pending" });// Queries all shards and merges resultsSharding Architecture:
┌─────────────┐│ MongoDB ││ Router │ (mongos)│ (mongos) │└──────┬──────┘ │ ┌───┴───┬────────┬────────┐ │ │ │ │┌──▼──┐ ┌──▼──┐ ┌──▼──┐ ┌──▼──┐│Shard│ │Shard│ │Shard│ │Shard││ 1 │ │ 2 │ │ 3 │ │ N │└─────┘ └─────┘ └─────┘ └─────┘Replica Sets for High Availability:
// Replica set provides:// - Automatic failover// - Data redundancy// - Read scaling
// Write to primarydb.users.insertOne({ name: "John", email: "john@example.com" });
// Read from secondarydb.users.find().readPref("secondary");PostgreSQL: Vertical and Read Replica Scaling
PostgreSQL primarily scales vertically, with read replicas for read scaling:
-- Vertical scaling: Increase server resources-- More CPU, RAM, faster storage
-- Read replicas for read scaling-- Primary handles writes-- Replicas handle reads
-- Connection string examples-- Primary: postgresql://primary.example.com/db-- Replica: postgresql://replica1.example.com/db
-- Application-level read/write splitting-- Write queries → Primary-- Read queries → ReplicasPostgreSQL Scaling Architecture:
┌──────────────┐│ PostgreSQL ││ Primary │ (Writes)└──────┬───────┘ │ ┌───┴────┬────────┬────────┐ │ │ │ │┌──▼──┐ ┌──▼──┐ ┌──▼──┐ ┌──▼──┐│Rep │ │Rep │ │Rep │ │Rep ││ 1 │ │ 2 │ │ 3 │ │ N │ (Reads)└─────┘ └─────┘ └─────┘ └─────┘PostgreSQL Sharding Solutions:
While PostgreSQL doesn’t natively support sharding like MongoDB, several solutions exist:
-- Option 1: PostgreSQL extensions-- pg_shard, Citus (now Citus Data)
-- Option 2: Application-level sharding-- Route queries based on shard key in application
-- Option 3: Partitioning (PostgreSQL 10+)CREATE TABLE orders ( id SERIAL, customer_id INTEGER, total DECIMAL(10, 2), created_at TIMESTAMP) PARTITION BY RANGE (created_at);
CREATE TABLE orders_2024_q1 PARTITION OF orders FOR VALUES FROM ('2024-01-01') TO ('2024-04-01');
CREATE TABLE orders_2024_q2 PARTITION OF orders FOR VALUES FROM ('2024-04-01') TO ('2024-07-01');Scaling Comparison
| Aspect | MongoDB | PostgreSQL |
|---|---|---|
| Horizontal Scaling | ✅ Native sharding | ❌ Requires extensions/solutions |
| Vertical Scaling | ✅ Supported | ✅ Primary method |
| Read Scaling | ✅ Replica sets | ✅ Read replicas |
| Write Scaling | ✅ Sharding distributes writes | ⚠️ Limited (single primary) |
| Auto-sharding | ✅ Automatic | ❌ Manual configuration |
| Shard Management | ✅ Built-in | ⚠️ External tools needed |
When Each Scaling Approach Works Best
Choose MongoDB for:
- Applications requiring horizontal write scaling
- Very large datasets (terabytes+)
- High write throughput requirements
- Global distribution needs
Choose PostgreSQL for:
- Applications that fit on single server or read replicas
- Complex queries that benefit from single-server optimization
- Strong consistency requirements across all data
- When vertical scaling is sufficient
ACID Compliance and Transactions
Transaction support and ACID guarantees differ significantly between MongoDB and PostgreSQL, affecting data consistency and reliability.
PostgreSQL: Full ACID Compliance
PostgreSQL provides full ACID compliance by default:
-- ACID Transaction exampleBEGIN;
-- Atomicity: All or nothingINSERT INTO accounts (id, balance) VALUES (1, 1000.00);INSERT INTO accounts (id, balance) VALUES (2, 500.00);
UPDATE accounts SET balance = balance - 100 WHERE id = 1;UPDATE accounts SET balance = balance + 100 WHERE id = 2;
-- If any operation fails, entire transaction rolls backCOMMIT;
-- Isolation levelsSET TRANSACTION ISOLATION LEVEL READ COMMITTED;SET TRANSACTION ISOLATION LEVEL REPEATABLE READ;SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
-- Nested transactions (savepoints)BEGIN; INSERT INTO users (name, email) VALUES ('John', 'john@example.com'); SAVEPOINT sp1; INSERT INTO orders (user_id, total) VALUES (1, 99.99); -- If this fails, rollback to savepoint ROLLBACK TO SAVEPOINT sp1;COMMIT;ACID Properties in PostgreSQL:
✅ Atomicity: All operations in a transaction succeed or fail together ✅ Consistency: Database constraints ensure data validity ✅ Isolation: Concurrent transactions don’t interfere ✅ Durability: Committed transactions survive crashes
MongoDB: ACID Transactions (v4.0+)
MongoDB added multi-document ACID transactions in version 4.0:
// Multi-document transactionconst session = client.startSession();
try { session.startTransaction();
// Atomicity: All operations succeed or fail together await db.accounts.updateOne( { _id: ObjectId("507f191e810c19729de860ea") }, { $inc: { balance: -100 } }, { session }, );
await db.accounts.updateOne( { _id: ObjectId("507f191e810c19729de860eb") }, { $inc: { balance: 100 } }, { session }, );
await session.commitTransaction();} catch (error) { await session.abortTransaction(); throw error;} finally { session.endSession();}MongoDB Transaction Limitations:
⚠️ Important considerations:
- Transactions available since MongoDB 4.0 (2018)
- Multi-document transactions have performance overhead
- Sharded collections: transactions limited to single shard (v4.2+) or cross-shard (v4.4+)
- Default write concern: w:1 (acknowledged) - can be configured for stronger guarantees
// Configure write concern for durabilitydb.accounts.insertOne( { _id: ObjectId("507f191e810c19729de860ea"), balance: 1000 }, { writeConcern: { w: "majority", wtimeout: 5000 } },);
// Read concern for consistencydb.accounts.find({}).readConcern("majority");Consistency Models
PostgreSQL: Strong Consistency
-- Strong consistency by default-- All reads see committed data-- Isolation levels control visibility
-- Read Committed (default)SET TRANSACTION ISOLATION LEVEL READ COMMITTED;SELECT balance FROM accounts WHERE id = 1;-- Always sees committed data
-- Serializable (strongest)SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;-- Prevents phantom reads and serialization anomaliesMongoDB: Configurable Consistency
// Read preference affects consistency// Primary (strong consistency)db.accounts.find({}).readPref("primary");
// Secondary (eventual consistency)db.accounts.find({}).readPref("secondary");
// Read concern levels// "local" - Fastest, may see uncommitted datadb.accounts.find({}).readConcern("local");
// "majority" - Only see majority-committed datadb.accounts.find({}).readConcern("majority");
// "linearizable" - Strongest, linearizable readsdb.accounts.find({}).readConcern("linearizable");Transaction Use Cases
When PostgreSQL’s ACID is Critical:
-- Financial transactionsBEGIN; UPDATE accounts SET balance = balance - 100 WHERE id = 1; UPDATE accounts SET balance = balance + 100 WHERE id = 2; INSERT INTO transactions (from_account, to_account, amount) VALUES (1, 2, 100);COMMIT;
-- Inventory managementBEGIN; UPDATE products SET stock = stock - 1 WHERE id = 123 AND stock > 0; INSERT INTO orders (product_id, quantity) VALUES (123, 1);COMMIT;When MongoDB Transactions are Sufficient:
// Multi-document updates with transactionsconst session = client.startSession();try { session.startTransaction();
await db.orders.updateOne( { _id: orderId }, { $set: { status: "completed" } }, { session }, );
await db.inventory.updateOne( { productId: productId }, { $inc: { stock: -quantity } }, { session }, );
await session.commitTransaction();} catch (error) { await session.abortTransaction();}Consistency Trade-offs
| Aspect | PostgreSQL | MongoDB |
|---|---|---|
| Default Consistency | Strong | Configurable (eventual by default) |
| ACID Transactions | ✅ Full support | ✅ Multi-document (v4.0+) |
| Cross-shard Transactions | N/A | ⚠️ Limited (v4.4+) |
| Isolation Levels | ✅ Multiple levels | ⚠️ Limited |
| Read Consistency | ✅ Strong by default | ⚠️ Configurable |
| Write Durability | ✅ Guaranteed | ⚠️ Configurable (write concern) |
Use Case Scenarios
Understanding when to use MongoDB vs PostgreSQL requires analyzing your specific application requirements. Here are common scenarios and recommendations.
Choose MongoDB When:
1. Content Management Systems
// Flexible content structuredb.articles.insertOne({ title: "Getting Started with MongoDB", content: "...", author: { name: "John Doe", email: "john@example.com", }, tags: ["database", "nosql", "mongodb"], metadata: { views: 0, likes: 0, published: true, publishDate: ISODate("2024-01-15"), }, // Flexible schema - can add fields without migration seo: { metaDescription: "...", keywords: ["..."], },});
// Easy to evolve schemadb.articles.insertOne({ title: "New Article", content: "...", // Different structure - no problem author: "Jane Smith", // String instead of object category: "Technology", // New field});2. Real-time Analytics and Logging
// High-volume write operationsdb.logs.insertMany([ { timestamp: ISODate(), level: "info", message: "User logged in", userId: ObjectId("..."), metadata: { ip: "192.168.1.1", userAgent: "..." }, }, // ... thousands of log entries]);
// Efficient aggregation for analyticsdb.logs.aggregate([ { $match: { timestamp: { $gte: new Date("2024-01-01") }, level: "error", }, }, { $group: { _id: { $dateToString: { format: "%Y-%m-%d", date: "$timestamp" } }, errorCount: { $sum: 1 }, }, },]);3. User Profiles and Preferences
// Flexible user datadb.users.insertOne({ _id: ObjectId("..."), email: "user@example.com", preferences: { theme: "dark", notifications: { email: true, push: false, sms: true, }, language: "en", }, // Can vary per user socialProfiles: { twitter: "@username", github: "username", },});4. E-commerce Product Catalogs
// Products with varying attributesdb.products.insertOne({ name: "Laptop", category: "Electronics", price: 999.99, attributes: { brand: "Dell", model: "XPS 15", specs: { cpu: "Intel i7", ram: "16GB", storage: "512GB SSD", }, },});
db.products.insertOne({ name: "Book", category: "Books", price: 19.99, attributes: { author: "Jane Author", isbn: "978-0123456789", pages: 300, // Different structure for different product types },});Choose PostgreSQL When:
1. Financial Applications
-- Strong ACID guarantees criticalBEGIN;
UPDATE accounts SET balance = balance - 100 WHERE id = 1;UPDATE accounts SET balance = balance + 100 WHERE id = 2;
INSERT INTO transactions ( from_account_id, to_account_id, amount, transaction_type, timestamp) VALUES (1, 2, 100, 'transfer', NOW());
COMMIT;
-- Complex financial reportingSELECT DATE_TRUNC('month', created_at) AS month, transaction_type, SUM(amount) AS total_amount, COUNT(*) AS transaction_countFROM transactionsWHERE created_at >= '2024-01-01'GROUP BY month, transaction_typeORDER BY month, transaction_type;2. E-commerce with Complex Relationships
-- Normalized schema with relationshipsSELECT o.order_number, c.name AS customer_name, c.email, p.name AS product_name, oi.quantity, oi.price, o.total, o.status, a.street, a.city, a.zip_codeFROM orders oINNER JOIN customers c ON o.customer_id = c.idINNER JOIN order_items oi ON o.id = oi.order_idINNER JOIN products p ON oi.product_id = p.idLEFT JOIN addresses a ON o.shipping_address_id = a.idWHERE o.status = 'pending'ORDER BY o.created_at DESC;3. Reporting and Business Intelligence
-- Complex analytical queriesWITH monthly_sales AS ( SELECT DATE_TRUNC('month', created_at) AS month, SUM(total) AS revenue, COUNT(*) AS order_count FROM orders WHERE status = 'completed' GROUP BY month),customer_lifetime_value AS ( SELECT customer_id, SUM(total) AS lifetime_value, COUNT(*) AS total_orders, MIN(created_at) AS first_order_date, MAX(created_at) AS last_order_date FROM orders WHERE status = 'completed' GROUP BY customer_id)SELECT c.name, c.email, clv.lifetime_value, clv.total_orders, clv.first_order_date, clv.last_order_date, CASE WHEN clv.lifetime_value > 1000 THEN 'VIP' WHEN clv.lifetime_value > 500 THEN 'Premium' ELSE 'Standard' END AS customer_tierFROM customers cINNER JOIN customer_lifetime_value clv ON c.id = clv.customer_idORDER BY clv.lifetime_value DESC;4. Multi-tenant SaaS Applications
-- Row-level security for multi-tenancyALTER TABLE orders ENABLE ROW LEVEL SECURITY;
CREATE POLICY tenant_isolation ON orders FOR ALL USING (tenant_id = current_setting('app.tenant_id')::INTEGER);
-- Set tenant contextSET app.tenant_id = 123;
-- Queries automatically filtered by tenantSELECT * FROM orders; -- Only returns orders for tenant 1235. Healthcare and Compliance Applications
-- Audit trails with triggersCREATE TABLE audit_log ( id SERIAL PRIMARY KEY, table_name VARCHAR(100), record_id INTEGER, action VARCHAR(20), old_data JSONB, new_data JSONB, changed_by INTEGER, changed_at TIMESTAMP DEFAULT NOW());
CREATE OR REPLACE FUNCTION audit_trigger()RETURNS TRIGGER AS $$BEGIN INSERT INTO audit_log (table_name, record_id, action, old_data, new_data) VALUES ( TG_TABLE_NAME, COALESCE(NEW.id, OLD.id), TG_OP, row_to_json(OLD)::jsonb, row_to_json(NEW)::jsonb ); RETURN NEW;END;$$ LANGUAGE plpgsql;
CREATE TRIGGER patients_audit AFTER INSERT OR UPDATE OR DELETE ON patients FOR EACH ROW EXECUTE FUNCTION audit_trigger();Hybrid Approaches
Sometimes, using both databases makes sense:
Example: E-commerce Platform
// MongoDB for product catalog (flexible attributes)// PostgreSQL for orders, payments, inventory (ACID critical)
// Application architecture// Product service → MongoDBconst product = await mongoDb.products.findOne({ _id: productId });
// Order service → PostgreSQLconst order = await postgres.query( ` INSERT INTO orders (customer_id, total, status) VALUES ($1, $2, 'pending') RETURNING *`, [customerId, total],);Migration Strategies
Migrating between MongoDB and PostgreSQL (or vice versa) requires careful planning and consideration of data structure, relationships, and application code changes.
Migrating from PostgreSQL to MongoDB
Step 1: Analyze Schema and Relationships
-- Identify tables and relationshipsSELECT table_name, column_name, data_type, is_nullableFROM information_schema.columnsWHERE table_schema = 'public'ORDER BY table_name, ordinal_position;
-- Identify foreign key relationshipsSELECT tc.table_name, kcu.column_name, ccu.table_name AS foreign_table_name, ccu.column_name AS foreign_column_nameFROM information_schema.table_constraints AS tcJOIN information_schema.key_column_usage AS kcu ON tc.constraint_name = kcu.constraint_nameJOIN information_schema.constraint_column_usage AS ccu ON ccu.constraint_name = tc.constraint_nameWHERE tc.constraint_type = 'FOREIGN KEY';Step 2: Design Document Structure
// Option 1: Denormalized (embed related data)// PostgreSQL: users table + orders table + order_items table// MongoDB: Single orders collection with embedded data
{ _id: ObjectId("..."), orderNumber: "ORD-001", customer: { id: 1, name: "John Doe", email: "john@example.com" }, items: [ { productId: 123, name: "Laptop", price: 999.99, quantity: 1 } ], total: 999.99, status: "pending"}
// Option 2: Normalized (use references)// Keep separate collections, use ObjectId references{ _id: ObjectId("..."), orderNumber: "ORD-001", customerId: ObjectId("..."), itemIds: [ObjectId("..."), ObjectId("...")], total: 999.99}Step 3: Data Migration Script
// Migration script exampleconst { Client } = require("pg");const { MongoClient } = require("mongodb");
async function migratePostgresToMongo() { const pgClient = new Client({ /* PostgreSQL config */ }); const mongoClient = new MongoClient("mongodb://localhost:27017");
await pgClient.connect(); await mongoClient.connect();
const db = mongoClient.db("migrated_db");
// Migrate users const usersResult = await pgClient.query("SELECT * FROM users"); const users = usersResult.rows.map((user) => ({ _id: new ObjectId(), name: user.name, email: user.email, age: user.age, createdAt: user.created_at, })); await db.collection("users").insertMany(users);
// Migrate orders with embedded customer data const ordersResult = await pgClient.query(` SELECT o.*, c.name AS customer_name, c.email AS customer_email FROM orders o JOIN customers c ON o.customer_id = c.id `);
for (const order of ordersResult.rows) { const orderItems = await pgClient.query( "SELECT * FROM order_items WHERE order_id = $1", [order.id], );
await db.collection("orders").insertOne({ _id: new ObjectId(), orderNumber: order.order_number, customer: { id: order.customer_id, name: order.customer_name, email: order.customer_email, }, items: orderItems.rows.map((item) => ({ productId: item.product_id, quantity: item.quantity, price: item.price, })), total: parseFloat(order.total), status: order.status, createdAt: order.created_at, }); }
await pgClient.end(); await mongoClient.close();}Migrating from MongoDB to PostgreSQL
Step 1: Analyze Document Structure
// Analyze MongoDB collections and document structuresdb.orders .find() .limit(10) .forEach((doc) => { printjson(doc); });
// Identify common fields vs variable fields// Plan normalized schemaStep 2: Design Relational Schema
-- Create normalized tablesCREATE TABLE customers ( id SERIAL PRIMARY KEY, name VARCHAR(100), email VARCHAR(255) UNIQUE, created_at TIMESTAMP);
CREATE TABLE products ( id SERIAL PRIMARY KEY, name VARCHAR(255), price DECIMAL(10, 2));
CREATE TABLE orders ( id SERIAL PRIMARY KEY, order_number VARCHAR(50) UNIQUE, customer_id INTEGER REFERENCES customers(id), total DECIMAL(10, 2), status VARCHAR(50), created_at TIMESTAMP);
CREATE TABLE order_items ( id SERIAL PRIMARY KEY, order_id INTEGER REFERENCES orders(id), product_id INTEGER REFERENCES products(id), quantity INTEGER, price DECIMAL(10, 2));Step 3: Data Migration Script
// Migration scriptconst { MongoClient } = require("mongodb");const { Client } = require("pg");
async function migrateMongoToPostgres() { const mongoClient = new MongoClient("mongodb://localhost:27017"); const pgClient = new Client({ /* PostgreSQL config */ });
await mongoClient.connect(); await pgClient.connect();
const db = mongoClient.db("source_db");
// Migrate customers (extract unique customers from orders) const customersMap = new Map(); const orders = await db.collection("orders").find({}).toArray();
for (const order of orders) { if (order.customer && !customersMap.has(order.customer.email)) { customersMap.set(order.customer.email, order.customer); } }
// Insert customers for (const [email, customer] of customersMap) { const result = await pgClient.query( "INSERT INTO customers (name, email, created_at) VALUES ($1, $2, $3) RETURNING id", [customer.name, customer.email, customer.createdAt || new Date()], ); customer.pgId = result.rows[0].id; }
// Migrate orders for (const order of orders) { const customer = customersMap.get(order.customer.email);
const orderResult = await pgClient.query( `INSERT INTO orders (order_number, customer_id, total, status, created_at) VALUES ($1, $2, $3, $4, $5) RETURNING id`, [ order.orderNumber, customer.pgId, order.total, order.status, order.createdAt, ], );
const orderId = orderResult.rows[0].id;
// Migrate order items for (const item of order.items) { // First ensure product exists let productResult = await pgClient.query( "SELECT id FROM products WHERE id = $1", [item.productId], );
if (productResult.rows.length === 0) { productResult = await pgClient.query( "INSERT INTO products (id, name, price) VALUES ($1, $2, $3) RETURNING id", [item.productId, item.name, item.price], ); }
await pgClient.query( `INSERT INTO order_items (order_id, product_id, quantity, price) VALUES ($1, $2, $3, $4)`, [orderId, item.productId, item.quantity, item.price], ); } }
await mongoClient.close(); await pgClient.end();}Migration Best Practices
✅ Planning Phase:
- Analyze data volume and relationships
- Design target schema carefully
- Plan for downtime or dual-write strategy
- Test migration on subset of data first
✅ Execution Phase:
- Use transactions where possible
- Implement data validation
- Monitor performance and errors
- Keep source database until verification complete
✅ Post-Migration:
- Verify data integrity
- Update application code
- Monitor performance
- Plan rollback strategy if needed
⚠️ Common Challenges:
- Data type conversions (dates, numbers, JSON)
- Handling nested structures
- Maintaining referential integrity
- Performance during migration
- Application code changes required
Best Practices
Following best practices ensures optimal performance, maintainability, and reliability with either database.
MongoDB Best Practices
1. Schema Design
// ✅ DO: Design schema based on query patterns// Embed data that's accessed togetherdb.orders.insertOne({ orderNumber: "ORD-001", customer: { name: "John Doe", email: "john@example.com" }, items: [ { productId: 123, name: "Laptop", price: 999.99 } ]});
// ❌ DON'T: Embed data that changes frequently// If customer email changes, you'd need to update all orders// Better to reference:db.orders.insertOne({ orderNumber: "ORD-001", customerId: ObjectId("..."), // Reference instead items: [...]});2. Indexing Strategy
// ✅ DO: Create indexes for query patternsdb.users.createIndex({ email: 1 }, { unique: true });db.orders.createIndex({ customerId: 1, createdAt: -1 });
// ❌ DON'T: Create too many indexes (slows writes)// Limit to 5-10 indexes per collection
// ✅ DO: Use compound indexes for multi-field queriesdb.orders.createIndex({ status: 1, createdAt: -1 });
// ✅ DO: Use partial indexes for filtered queriesdb.users.createIndex( { email: 1 }, { partialFilterExpression: { active: true } },);3. Query Optimization
// ✅ DO: Use projection to limit returned fieldsdb.users.find({ age: { $gte: 30 } }, { name: 1, email: 1 });
// ❌ DON'T: Use SELECT * equivalentdb.users.find({ age: { $gte: 30 } }); // Returns all fields
// ✅ DO: Use aggregation pipeline efficientlydb.orders.aggregate([ { $match: { status: "completed" } }, // Early filtering { $group: { _id: "$customerId", total: { $sum: "$total" } } }, { $sort: { total: -1 } }, { $limit: 10 },]);
// ✅ DO: Use explain() to analyze queriesdb.users.find({ email: "john@example.com" }).explain("executionStats");4. Write Operations
// ✅ DO: Use bulk operations for multiple writesconst bulkOps = users.map((user) => ({ updateOne: { filter: { email: user.email }, update: { $set: user }, upsert: true, },}));db.users.bulkWrite(bulkOps, { ordered: false });
// ✅ DO: Configure write concern for durabilitydb.accounts.insertOne( { balance: 1000 }, { writeConcern: { w: "majority", wtimeout: 5000 } },);
// ❌ DON'T: Use unacknowledged writes in productiondb.users.insertOne({ name: "John" }, { writeConcern: { w: 0 } });5. Transactions
// ✅ DO: Keep transactions shortconst session = client.startSession();try { session.startTransaction(); // Minimal operations await db.accounts.updateOne( { _id: id1 }, { $inc: { balance: -100 } }, { session }, ); await db.accounts.updateOne( { _id: id2 }, { $inc: { balance: 100 } }, { session }, ); await session.commitTransaction();} catch (error) { await session.abortTransaction(); throw error;} finally { session.endSession();}
// ❌ DON'T: Long-running transactions// Keep transaction duration under 1 second when possiblePostgreSQL Best Practices
1. Schema Design
-- ✅ DO: Normalize appropriately-- Balance normalization with query performanceCREATE TABLE customers ( id SERIAL PRIMARY KEY, name VARCHAR(100) NOT NULL, email VARCHAR(255) UNIQUE NOT NULL);
-- ✅ DO: Use appropriate data typesCREATE TABLE products ( id SERIAL PRIMARY KEY, name VARCHAR(255) NOT NULL, price DECIMAL(10, 2) NOT NULL, -- Not FLOAT for money created_at TIMESTAMP DEFAULT NOW() -- Not VARCHAR);
-- ✅ DO: Add constraints for data integrityCREATE TABLE orders ( id SERIAL PRIMARY KEY, customer_id INTEGER NOT NULL REFERENCES customers(id), total DECIMAL(10, 2) NOT NULL CHECK (total >= 0), status VARCHAR(50) DEFAULT 'pending' CHECK (status IN ('pending', 'completed', 'cancelled')));2. Indexing Strategy
-- ✅ DO: Create indexes for foreign keysCREATE INDEX idx_orders_customer ON orders(customer_id);
-- ✅ DO: Create indexes for WHERE clausesCREATE INDEX idx_users_email ON users(email);CREATE INDEX idx_orders_status ON orders(status);
-- ✅ DO: Use composite indexes for multi-column queriesCREATE INDEX idx_orders_customer_statusON orders(customer_id, status);
-- ✅ DO: Use partial indexes for filtered queriesCREATE INDEX idx_active_users_emailON users(email) WHERE active = true;
-- ❌ DON'T: Over-index (slows writes)-- Monitor index usage with pg_stat_user_indexesSELECT * FROM pg_stat_user_indexes WHERE idx_scan = 0;3. Query Optimization
-- ✅ DO: Use EXPLAIN ANALYZE to optimize queriesEXPLAIN ANALYZESELECT * FROM users WHERE email = 'john@example.com';
-- ✅ DO: Use specific columns instead of SELECT *SELECT name, email FROM users WHERE age >= 30;
-- ✅ DO: Use JOINs efficiently-- Ensure JOIN columns are indexedSELECT u.name, o.totalFROM users uINNER JOIN orders o ON u.id = o.customer_idWHERE u.email = 'john@example.com';
-- ✅ DO: Use LIMIT for large result setsSELECT * FROM orders ORDER BY created_at DESC LIMIT 100;
-- ❌ DON'T: Use functions in WHERE clauses (prevents index usage)SELECT * FROM users WHERE UPPER(email) = 'JOHN@EXAMPLE.COM';-- Better: SELECT * FROM users WHERE email = 'john@example.com';4. Connection Management
-- ✅ DO: Use connection pooling-- Application level: pg-pool, PgBouncer, etc.
-- ✅ DO: Set appropriate connection limits-- postgresql.conf: max_connections = 100
-- ✅ DO: Use prepared statementsPREPARE get_user ASSELECT * FROM users WHERE id = $1;
EXECUTE get_user(123);
-- ✅ DO: Use transactions appropriatelyBEGIN; -- Multiple operationsCOMMIT;5. Maintenance
-- ✅ DO: Regular VACUUM and ANALYZEVACUUM ANALYZE users;
-- ✅ DO: Monitor table bloatSELECT schemaname, tablename, pg_size_pretty(pg_total_relation_size(schemaname||'.'||tablename)) AS sizeFROM pg_tablesWHERE schemaname = 'public'ORDER BY pg_total_relation_size(schemaname||'.'||tablename) DESC;
-- ✅ DO: Update statistics regularlyANALYZE;
-- ✅ DO: Monitor slow queries-- Enable log_min_duration_statement in postgresql.confGeneral Best Practices (Both Databases)
1. Security
// MongoDB: Use authentication and authorization// Enable authentication in mongod.conf// Create users with least privilege
use admin;db.createUser({ user: "appuser", pwd: "securepassword", roles: [{ role: "readWrite", db: "mydb" }]});-- PostgreSQL: Use roles and permissionsCREATE ROLE appuser WITH LOGIN PASSWORD 'securepassword';GRANT CONNECT ON DATABASE mydb TO appuser;GRANT USAGE ON SCHEMA public TO appuser;GRANT SELECT, INSERT, UPDATE, DELETE ON ALL TABLES IN SCHEMA public TO appuser;2. Backup and Recovery
# MongoDB backupmongodump --db mydb --out /backup/mongodb
# MongoDB restoremongorestore --db mydb /backup/mongodb/mydb
# PostgreSQL backuppg_dump -U postgres mydb > /backup/postgres/mydb.sql
# PostgreSQL restorepsql -U postgres mydb < /backup/postgres/mydb.sql3. Monitoring
// MongoDB: Monitor server statusdb.serverStatus();db.stats();db.collection.stats();
// Check replication lagrs.printSlaveReplicationInfo();-- PostgreSQL: Monitor database activitySELECT * FROM pg_stat_activity;SELECT * FROM pg_stat_database;SELECT * FROM pg_stat_user_tables;
-- Check replication lag (if using replicas)SELECT * FROM pg_stat_replication;4. Performance Tuning
💡 MongoDB Performance Tips:
- Monitor query performance with explain()
- Use appropriate read preferences
- Configure write concern based on needs
- Monitor replica set lag
- Use connection pooling
💡 PostgreSQL Performance Tips:
- Tune shared_buffers and work_mem
- Use EXPLAIN ANALYZE regularly
- Monitor slow query log
- Use connection pooling (PgBouncer)
- Consider read replicas for read scaling
Conclusion
Choosing between MongoDB and PostgreSQL is a fundamental architectural decision that depends on your specific requirements, data structure, query patterns, and scalability needs.
Choose MongoDB when:
- Your data structure is flexible and changes frequently
- You need horizontal scaling for writes
- Your data is naturally document-oriented
- Rapid development and iteration are priorities
- You’re building content management, logging, or real-time analytics systems
Choose PostgreSQL when:
- Your data has clear relationships and structure
- ACID compliance and data integrity are critical
- You need complex queries with JOINs
- You’re building financial, healthcare, or compliance-heavy applications
- Vertical scaling or read replicas meet your needs
Both databases are production-ready, widely adopted, and capable of handling enterprise-scale applications. MongoDB excels at flexibility and horizontal scaling, while PostgreSQL excels at data integrity and complex relational queries.
Many successful applications use both databases in a polyglot persistence approach, leveraging each database’s strengths for different parts of the system. For example, using MongoDB for flexible product catalogs and PostgreSQL for orders and payments where ACID compliance is critical.
The key is understanding your application’s specific requirements and choosing the database that best aligns with your data model, query patterns, consistency needs, and scalability requirements. Consider starting with one database and migrating if requirements change—both databases offer migration paths and can coexist in modern architectures.
For more database comparisons, check out our guide on PostgreSQL vs MySQL vs SQLite or explore our backend development articles for more insights into database selection and optimization.